772 research outputs found

    X-ray Brightening and UV Fading of Tidal Disruption Event ASASSN-15oi

    Full text link
    We present late-time observations by Swift and XMM-Newton of the tidal disruption event (TDE) ASASSN-15oi that reveal that the source brightened in the X-rays by a factor of ∼10\sim10 one year after its discovery, while it faded in the UV/optical by a factor of ∼100\sim 100. The XMM-Newton observations measure a soft X-ray blackbody component with kTbb∼45kT_{\rm bb} \sim 45 eV, corresponding to radiation from several gravitational radii of a central ∼106M⊙\sim 10^6 M_\odot black hole. The last Swift epoch taken almost 600 days after discovery shows that the X-ray source has faded back to its levels during the UV/optical peak. The timescale of the X-ray brightening suggests that the X-ray emission could be coming from delayed accretion through a newly forming debris disk, and that the prompt UV/optical emission is from the prior circularization of the disk through stream-stream collisions. The lack of spectral evolution during the X-ray brightening disfavors ionization breakout of a TDE "veiled" by obscuring material. This is the first time a TDE has been shown to have a delayed peak in soft X-rays relative to the UV/optical peak, which may be the first clear signature of the real-time assembly of a nascent accretion disk, and provides strong evidence for the origin of the UV/optical emission from circularization, as opposed to reprocessed emission of accretion radiation.Comment: Accepted for publication in ApJ Letter

    Discovery of the Very Red Near-Infrared and Optical Afterglow of the Short-Duration GRB 070724A

    Full text link
    [Abridged] We report the discovery of the near-infrared and optical afterglow of the short-duration gamma-ray burst GRB070724A. The afterglow is detected in i,J,H,K observations starting 2.3 hr after the burst with K=19.59+/-0.16 mag and i=23.79+/-0.07 mag, but is absent in images obtained 1.3 years later. Fading is also detected in the K-band between 2.8 and 3.7 hr at a 4-sigma significance level. The optical/near-IR spectral index, beta_{O,NIR}=-2, is much redder than expected in the standard afterglow model, pointing to either significant dust extinction, A_{V,host}~2 mag, or a non-afterglow origin for the near-IR emission. The case for extinction is supported by a shallow optical to X-ray spectral index, consistent with the definition for ``dark bursts'', and a normal near-IR to X-ray spectral index. Moreover, a comparison to the optical discovery magnitudes of all short GRBs with optical afterglows indicates that the near-IR counterpart of GRB070724A is one of the brightest to date, while its observed optical emission is one of the faintest. In the context of a non-afterglow origin, the near-IR emission may be dominated by a mini-supernova, leading to an estimated ejected mass of M~10^-4 Msun and a radioactive energy release efficiency of f~0.005 (for v~0.3c). However, the mini-SN model predicts a spectral peak in the UV rather than near-IR, suggesting that this is either not the correct interpretation or that the mini-SN models need to be revised. Finally, the afterglow coincides with a star forming galaxy at z=0.457, previously identified as the host based on its coincidence with the X-ray afterglow position (~2" radius). Our discovery of the optical/near-IR afterglow makes this association secure.Comment: Submitted to ApJ; 10 pages, 5 figures, 1 tabl

    Probing the distance and morphology of the Large Magellanic Cloud with RR Lyrae stars

    Full text link
    We present a Bayesian analysis of the distances to 15,040 Large Magellanic Cloud (LMC) RR Lyrae stars using VV- and II-band light curves from the Optical Gravitational Lensing Experiment, in combination with new zz-band observations from the Dark Energy Camera. Our median individual RR Lyrae distance statistical error is 1.89 kpc (fractional distance error of 3.76 per cent). We present three-dimensional contour plots of the number density of LMC RR Lyrae stars and measure a distance to the core LMC RR Lyrae centre of 50.2482±0.0546(statistical)±0.4628(systematic)kpc{50.2482\pm0.0546 {\rm(statistical)} \pm0.4628 {\rm(systematic)} {\rm kpc}}, equivalently μLMC=18.5056±0.0024(statistical)±0.02(systematic){\mu_{\rm LMC}=18.5056\pm0.0024 {\rm(statistical)} \pm0.02 {\rm(systematic)}}. This finding is statistically consistent with and four times more precise than the canonical value determined by a recent meta-analysis of 233 separate LMC distance determinations. We also measure a maximum tilt angle of 11.84∘±0.80∘11.84^{\circ}\pm0.80^{\circ} at a position angle of 62∘62^\circ, and report highly precise constraints on the VV, II, and zz RR Lyrae period--magnitude relations. The full dataset of observed mean-flux magnitudes, derived colour excess E(V−I){E(V-I)} values, and fitted distances for the 15,040 RR Lyrae stars produced through this work is made available through the publication's associated online data.Comment: 7 pages, 8 figure

    Preliminary Results from the Caltech Core-Collapse Project (CCCP)

    Get PDF
    We present preliminary results from the Caltech Core-Collapse Project (CCCP), a large observational program focused on the study of core-collapse SNe. Uniform, high-quality NIR and optical photometry and multi-epoch optical spectroscopy have been obtained using the 200'' Hale and robotic 60'' telescopes at Palomar, for a sample of 50 nearby core-collapse SNe. The combination of both well-sampled optical light curves and multi-epoch spectroscopy will enable spectroscopically and photometrically based subtype definitions to be disentangled from each other. Multi-epoch spectroscopy is crucial to identify transition events that evolve among subtypes with time. The CCCP SN sample includes every core-collapse SN discovered between July 2004 and September 2005 that was visible from Palomar, found shortly (< 30 days) after explosion (based on available pre-explosion photometry), and closer than ~120 Mpc. This complete sample allows, for the first time, a study of core-collapse SNe as a population, rather than as individual events. Here, we present the full CCCP SN sample and show exemplary data collected. We analyze available data for the first ~1/3 of the sample and determine the subtypes of 13 SNe II based on both light curve shapes and spectroscopy. We discuss the relative SN II subtype fractions in the context of associating SN subtypes with specific progenitor stars.Comment: To appear in the proceedings of the meeting "The Multicoloured Landscape of Compact Objects and their Explosive Origins", Cefalu, Italy, June 2006, to be published by AIP, Eds. L. Burderi et a

    A year in the life of GW170817: the rise and fall of a structured jet from a binary neutron star merger

    Get PDF
    We present the results of our year-long afterglow monitoring of GW170817, the first binary neutron star (NS) merger detected by advanced LIGO and advanced Virgo. New observations with the Australian Telescope Compact Array (ATCA) and the Chandra X-ray Telescope were used to constrain its late-time behavior. The broadband emission, from radio to X-rays, is well-described by a simple power-law spectrum with index ~0.585 at all epochs. After an initial shallow rise ~t^0.9, the afterglow displayed a smooth turn-over, reaching a peak X-ray luminosity of ~5e39 erg/s at 160 d, and has now entered a phase of rapid decline ~t^(-2). The latest temporal trend challenges most models of choked jet/cocoon systems, and is instead consistent with the emergence of a relativistic structured jet seen at an angle of ~22 deg from its axis. Within such model, the properties of the explosion (such as its blastwave energy E_K~2E50 erg, jet width theta_c~4 deg, and ambient density n~3E-3 cm^(-3)) fit well within the range of properties of cosmological short GRBs.Comment: 11 pages, 8 figures, 2 tables, MNRAS, in press. Final version, minor changes only relative to original submission dated 21 August 201

    Swift J1112.2-8238: A Candidate Relativistic Tidal Disruption Flare

    Get PDF
    We present observations of Swift J1112.2-8238, and identify it as a candidate relativistic tidal disruption flare (rTDF). The outburst was first detected by Swift/BAT in June 2011 as an unknown, long-lived (order of days) γ\gamma-ray transient source. We show that its position is consistent with the nucleus of a faint galaxy for which we establish a likely redshift of z=0.89z=0.89 based on a single emission line that we interpret as the blended [OII]λ3727\lambda3727 doublet. At this redshift, the peak X/γ\gamma-ray luminosity exceeded 104710^{47} ergs s−1^{-1}, while a spatially coincident optical transient source had i′∼22i^{\prime} \sim 22 (Mg∼−21.4_g \sim -21.4 at z=0.89z=0.89) during early observations, ∼20\sim 20 days after the Swift trigger. These properties place Swift J1112.2-8238 in a very similar region of parameter space to the two previously identified members of this class, Swift J1644+57 and Swift J2058+0516. As with those events the high-energy emission shows evidence for variability over the first few days, while late time observations, almost 3 years post-outburst, demonstrate that it has now switched off. Swift J1112.2-8238 brings the total number of such events observed by Swift to three, interestingly all detected by Swift over a ∼\sim3 month period (<3%<3\% of its total lifetime as of March 2015). While this suggests the possibility that further examples may be uncovered by detailed searches of the BAT archives, the lack of any prime candidates in the years since 2011 means these events are undoubtedly rare.Comment: 11 pages, 5 figures, accepted for publication by MNRA

    A Case Study of On-the-Fly Wide-Field Radio Imaging Applied to the Gravitational-wave Event GW 151226

    Get PDF
    We apply a newly-developed On-the-Fly mosaicing technique on the NSF's Karl G. Jansky Very Large Array (VLA) at 3 GHz in order to carry out a sensitive search for an afterglow from the Advanced LIGO binary black hole merger event GW 151226. In three epochs between 1.5 and 6 months post-merger we observed a 100 sq. deg region, with more than 80% of the survey region having a RMS sensitivity of better than 150 uJy/beam, in the northern hemisphere having a merger containment probability of 10%. The data were processed in near-real-time, and analyzed to search for transients and variables. No transients were found but we have demonstrated the ability to conduct blind searches in a time-frequency phase space where the predicted afterglow signals are strongest. If the gravitational wave event is contained within our survey region, the upper limit on any late-time radio afterglow from the merger event at an assumed mean distance of 440 Mpc is about 1e29 erg/s/Hz. Approximately 1.5% of the radio sources in the field showed variability at a level of 30%, and can be attributed to normal activity from active galactic nuclei. The low rate of false positives in the radio sky suggests that wide-field imaging searches at a few Gigahertz can be an efficient and competitive search strategy. We discuss our search method in the context of the recent afterglow detection from GW 170817 and radio follow-up in future gravitational wave observing runs.Comment: 11 pages. 6 figures. 1 table. Accepted for publication in ApJ Letter

    A luminous blue kilonova and an off-axis jet from a compact binary merger at z=0.1341

    Get PDF
    The recent discovery of a faint gamma-ray burst (GRB) coincident with the gravitational wave (GW) event GW 170817 revealed the existence of a population of low-luminosity short duration gamma-ray transients produced by neutron star mergers in the nearby Universe. These events could be routinely detected by existing gamma-ray monitors, yet previous observations failed to identify them without the aid of GW triggers. Here we show that GRB150101B was an analogue of GRB170817A located at a cosmological distance. GRB 150101B was a faint short duration GRB characterized by a bright optical counterpart and a long-lived X-ray afterglow. These properties are unusual for standard short GRBs and are instead consistent with an explosion viewed off-axis: the optical light is produced by a luminous kilonova component, while the observed X-rays trace the GRB afterglow viewed at an angle of ~13 degrees. Our findings suggest that these properties could be common among future electromagnetic counterparts of GW sources.Comment: 28 pages, 8 figures, 2 tables. Accepted for publicatio

    HST and Spitzer Observations of the Host Galaxy of GRB 050904: A Metal-Enriched, Dusty Starburst at z=6.295

    Get PDF
    We present deep Hubble Space Telescope and Spitzer Space Telescope observations of the host galaxy of GRB 050904 at z=6.295. The host is detected in the H-band and marginally at 3.6 micron. From these detections, and limits in the z'-band and 4.5 micron, we infer an extinction-corrected absolute magnitude, M(UV)=-20.7 mag, or ~L*, a substantial star formation rate of 15 solar masses per year, and a stellar mass of a few 10^9 solar masses. A comparison to the published sample of spectroscopically-confirmed galaxies at z>5.5 reveals that the host of GRB 050904 would evade detection and/or confirmation in any of the current surveys due to the lack of detectable Ly-alpha emission, which is likely the result of dust extinction (A[1200]~1.5 mag). This suggests that not all luminous starburst galaxies at z~6 are currently being accounted for. Most importantly, using the metallicity of Z~0.05 solar inferred from the afterglow absorption spectrum, our observations indicate for the first time that the observed evolution in the mass- and luminosity-metallicity relations from z=0 to z~2 continues on to z>6. The ease of measuring redshifts and metallicities from the afterglow emission suggests that in tandem with the next generation ground- and space-based telescopes, a GRB mission with dedicated near-IR follow-up can provide unique information on the evolution of stars and galaxies through the epoch of re-ionization.Comment: Submitted to ApJ; 11 pages, 5 figures; A high-resolution version of figure 1 can be found at http://www.ociw.edu/~eberger/fig1.050904.berger.ep
    • …
    corecore